
Using a s imula tor  with k = 18 mil l idarcy,  we also pe r fo rmed  experiments  tode te rmine  the effect of aporous  
medium on the phase t ransi t ions of propane in a mixture with a smal l  amount (10-15%) of nitrogen or  carbon 
dioxide. The presence  of an iner t  gas does not affect the above-mentioned phase transi t ions at part ial  p r e s -  
sures  lower than the sa tura ted-vapor  p re s su re .  

In addition to the general ly  accepted pa ramete r s  -- the poros i ty ,  permeabi l i ty ,  the part icle size dis-  
tribution curve ,  and the poromet r ic  curve -- a porous medium can probably be charac te r ized  also by the ex-  
per imenta l  dependence s =f (AP)  or  s = f ( P / P s ) ,  determined for a cer tain gas which is readily sorbed.  

The above resul ts  of the experimental  investigation of the effect of porous media on the phase t ransi t ions 
of individual hydrocarbons in the region of d i rec t  condensation cannot be used to charac te r ize  the p rocesses  
of r e t rograde  condensation of hydrocarbon mixtures .  

NOTATION 

P, p ressure ;  Ps ,  sa tura ted-vapor  p res su re ;  p, density; Vsi, pore volume of the simulator;  z, compres s -  
ibility factor;  G, quantity of mat ter ;  Q, gas volume; s,  saturation; ~, weight percentage of the liquid phase; 
T, t,  absolute t empera ture  and tempera ture  in degrees Celsius,  respect ively;  R, gas constant; a ,  amount of 
desorbed mat te r ;  k, permeabil i ty .  
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H E A T  A N D  M A S S  T R A N S F E R  IN U N D E V E L O P E D  B O I L I N G  

IN H E A T - T R A N S M I T T I N G  S L O T  C H A N N E L S  

P .  A .  N o v i k o v ,  L .  Y a .  L y u b i n ,  
a n d  1~. K .  S n e z h k o  

UDC 621.565.58(088.8) 

One of the variants  of the problem of thermosta t ic  control of objects involving quasis ta t ionary 
boiling of a hea t - t r ans fe r  medium in capi l lary gaps is examined. 

In [1, 2] we considered the problem of the tempera ture  control  of some objects heated unilaterally by 
radiation by the use of nar row heat- t ransmit t ing channels filled with a subliming hea t - t r ans fe r  medium and 
obtained equations for  engineering calculations of their  optimum geometr ic  charac te r i s t i c s .  

In the case  where the heat regime of operation of such devices is al tered and the thermodynamic pa ram-  
e te rs  of the medium are above the tr iple point, they can function as ordinary heat pipes in which effective 
heat conduction is obtained by a double phase change and re turn of the liquid phase to the evaporation zone. 
The role of the wick in this case is played by the closed slot channels part ial ly filled with liquid. On the heat-  
receiving region of the channel walls vapor bubbles will a r i se  and will grow. The breakaway of the bubbles 
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Fig. 1. Heat- t ransmit t ing slot channels: 
a,  b) cyl indrical  and spherical ;  c ,  d) 
flat; e, f) conical  and radial .  

and their  movement  into the condensation zone may be due ei ther  to the effect of external forces  (centrifugal, 
gravi tat ional ,  e lec t romagnet ic ,  etc. ) or  to capi l lary  potential (in wedge-shaped gaps). 

Figure 1 shows various fo rms  of frequently encountered slot channels of constant (a, c) and variable 
Oo, d, e, f) c ross  section with an evaporation zone (I) and condensation zone (liT), and the motion of liquid and 
vapor between these two zones (II). 

In the present  paper  we confine ourselves  to an investigation of the effectiveness of such hea t - t r ansmi t -  
ting devices in separat ion of the hea t - t r ans fe r  medium in the ~hot" zone of a plane slot gap. The calculation 
for  the condensation zone will be s imi lar .  

To a s ses s  the effectiveness of various methods of phase separat ion we can use the resul ts  of [3] and 
Eqs.  (2.3.26) and (2.5.26) f r o m  [4], which give the velocity of bubbles flattened between the gap walls,  at 
Re <<R0/h0, when the motion of the bubbles can be regarded  as quasistat ionary.  

The velocity of a bubble flattened in a slot  channel filled with an effectively inviscid liquid (large Re) is 
determined by the relat ive s trength of the mass  and capi l lary forces .  The resul ts  of the corresponding exper i -  
mental  investigations a re  approximated by the formulas  [5] 

] / 'F -~=6.2] / -~  for Bo~0.055, 

]/'FF = 1.5 for Bo ~> 0.055. 

The effect of capi l lary forces  on the shape of a bubble of large volume is negligibly small .  Such a bubble 
moves in the fo rm of a c i r cu la r  segment ,  oriented in the direct ion of motion,  v~th velocity U = 0.5~-R-0 [6]. 

Questions relating to boiling of a liquid medium and the mechanism of bubble formation a re  dealt with in 
detail in [8-10]. 

In some cases  the medium used is a liquid whose saturat ion tempera ture  at the permiss ib le  p re s su res  
differs only slightly f rom the tempera ture  maintained in the t empera ture -cont ro l led  volume. If the coefficient 
of heat t r ans fe r  to the evaporating liquid is not too high, we can expect that in the lat ter  vapor will be slowly 
produced by undeveloped boiling, i . e . ,  a lmost  all the space within the gap will be heated pract ical ly  to the 
t empera tu re  of the surroundings.  Only in relat ively smal l  volumes close to the bubbles growing by evaporation 
will the liquid t empera tu re  differ slightly f rom the channel wall t empera ture  T and fall within the limits of the 
the rma l  boundary layer  to approximately the saturation tempera ture  Ts .  It is obvious that the average distances 
between the bubbles at sufficiently high velocit ies of t ranslat ional  motion will be much g rea t e r  than their  d iam-  
e te r s .  We can fur ther  assume that the supply of liquid to the considered zone corresponds  to its consumption 
due to evaporation,  i . e . ,  in the channel a given liquid level will be maintained. 

The study of the kinetics of the considered p rocess  reduces in a f i r s t  (linear) approximation to solution 
of the following problem.  A portion of the capi l lary  gap of width b and length (along the x axis) L is filled with 
liquid (Fig. 2). 
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Fig.  2. Plan view of portion of channel in evaporation 
z o n e .  

Fig. 3. Bubble coordinates .  

We assume that the inner surface of the gap in the evaporation zone (with the exception of small regions 
near the bubbles) has a practically constant temperature Tw, exceeding the saturation temperat~dre T s by an 
amount AT (AT > 0) at the given pressure. FulfiUmentofthiseonditionisensuredbythethieknessandther- 
real conductivity of the wall material, an appropriate method of supplying heat to it ,  and the small superheat 
of the liquid in the gap, ensuring at real bubble velocities u(x) sufficiently large ratios of average distances 
between the bubbles to their diameters over the whole considered portion. 

It is obvious that bubbles flattened between the gap walls will be initiated at vapor-forming centers in 
various regions of the gap, will grow to a certain size, and will then move off in the direction of the acting 
forces (in the direction of the x axis), becoming larger as they go. 

Then the average number of bubbles beginning translational motion in unit time from unit area of wall 
in contact with the liquid at the considered instant will be given approximately by the formula 

N = 2kno/t  o, 

where k is a coefficient allowing for the possibility of coalescence of several bubbles formed near close vapor- 
forming centers (k _< I). 

On this surface, characterized by microirregularities, the presence of scale, and gas adsorbed in pores, 

the number of vapor-forming centers n o will be determined by the liquid superheat close to the wall [7-8], and 

if the superheat is constant along the wall, the number n o at a given temperature head AT will also be constant. 

The period of bubble formation consists of two stages: t o = t I + t2, where tl is the time of nucleation and 

growth of the bubble to the start of translational movement; t 2 is its time of departure from the vicinity of the 

vapor-forming center. The bubble gro~x4h rate is particularly low at the initial stage, when its radius is very 

small. Hence, we will assume that the kinetics of bubble formation is almost entirely determined by this 
initial stage (i. e., along the gap t o = const). 

Then N will be independent of the local gap width (of the coordinate x, N = const), and the average num- 

ber of bubbles formed in an elementary layer (of width dx 0 and at a distance x 0 from the initial cross section) 

and simultaneously occupying an elementary layer dx at a distance x from the initial section will be 

dNo --  bN~ (x,,) dxodx. (1) 
u (x) 

We assume that the motion of the bubbles is quasis tat ionary and depends only on the coordinate x, and the 
maximum size of the bubbles is smal l  in compar ison  with the length of the portion in which the pa ramete r s  
7/and ~ charac te r iz ing  the p rocess  change appreciably.  This means that we are  considering undeveloped 
forms of boiling, corresponding to relat ively low tempera ture  heads AT and low c o e f f i c i e n t s  of heat t r ans fe r  
f rom the external  medium to the liquid. 

Thus,  the a rea  of wall surface adjoining the vapor in portion dx will be 

0 

Here S(x, x~) is the a rea  of eontact with the wall of the bubble ar r iv ing in section x f rom section x 0. But 
dS 1 = ~bdx; hence,  the coefficient ~ will sat isfy the following second-o rde r  Vol ter ra- type  integral  equation. 
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~1 (x) -k J K (x, xo) ~1 (xo) dxo = F (x), 
0 

(2) 

where 

K (x, x 3 =  NSu(X,(x) Xo) ; F (x) = ~ K (x, xo) dx o. 

0 

The supply of heat to the phase-change surface is a lmost  entirely determined by large bubbles, whose 
charac te r i s t i c  s ize in the plane of symmet ry  is much g r ea t e r  than the gap width, i . e . ,  a considerable p ropor -  
tion of the bubbles manage to grow to such size during their  l ifetime. Then we can ignore the change in the 
mean curvature  of the phase interface with bubble growth and assume that vapor production occurs  at p rac t i -  
cally constant p r e s s u r e  and that the rate of growth of a bubble moving in the gap, as in the case of surface 
[11] and pool [12] boiling, will be determined entirely by the rate of supply of heat to i t ,  i . e . ,  

dV O 
tit rp" 

(3) 

The surface  adjacent to the bubble moving in the channel will be separated f rom it by a thin layer  of liquid. 
Hence, the heat flux to the bubble is Q = Qt + Q2, where Q1 is the heat supply f rom the main mass  of liquid, 
and Q2 is the heat supply f rom the wall through this thin layer .  The flux Q2 is s imi la r  to the heat flux through 
the mic ro l aye r  in surface boiling in a large volume [13].  

To a s ses s  the flux Q1 we calculate the heat supply to a cyl indrical  surface of radius R0, on which a t em-  
pera ture  Ts is maintained,  f rom liquid filling a slot channel. Since R 0 >>h 0, then at Pe <<1 (we have in mind 
nonmetallic liquids at Re << 1 and metall ic liquids at pract ical ly  any Re) the determination of Q1 reduces in 
pract ice  to the solution of the plane problem for  the function T, harmonic in the region 0 < y < ~; --h 0 < Z < 
h0, and satisfying the following boundary conditions: 

) w I T / d Z = •  w - T )  when Z =  +__h0; T = T  s,when g = 0 .  

The f i r s t  of these conditions is sat isf ied,  for  instance,  when the liquid is heated through a sufficiently 
thin wall, and its the rmal  res i s tance  and the longitudinal flow of heat in it can be neglected. In this case T w 
cor responds  to the t empera tu re  of the surrounding gaseous medium, and the heat flux is 

Qi = 16rtB~+R~ (T~ - -  T~), 

sin2 ~h 
B =  2vhq-sin2vh , v k t g % = B i -  

k = l  

At Taylor  numbers  T ~ 3- 10 -3 the thickness of the layer  left behind the receding meniscus can be eval- 
uated analytically [4]. Suo and Griffith [14] gave the resul ts  of an experimental  investigation of the relat ive 
thickness 6 / r  0 of the layer  of liquid left on the walls of a cylindrical  tube of radius r 0 when a large bubble 
moves through it,  in relat ion to the dimensionless  pa ramete r s  T and G = #2/(pov 0) for  a wide range of variat ion 
of these pa r ame te r s .  At sufficiently large t ransla t ional  velocit ies we can assume that in the t ime of move-  
ment of the bubble through a distance 2R 0 the thickness of the layer  is pract ical ly  unaltered by evaporation. 

As was shown in [4], when R0/h 0 >> 1 there  is pract ical ly  no boundary layer  in flow around a bubble flat-  
tened between gap walls,  i . e . ,  the quasipotential form of flow in the gap is not affected by approach to the 
phase interface and, hence, the cha rac te r i s t i c  scale of such a flow is the gap width; in a l inear approximation 
the general  case  of flow of a liquid in a gap with a moving bubble present  in it can be represented as the super-  
posit ion of a flow corresponding to quasipotential  flow over  a s tat ionary bubble and quasi - two-dimensional  
flow in planes perpendicular  to the plane of symmet ry  of the gap. The second flow has a distinct boundary 
layer  and the liquid velocity here  changes (along the phase interface) f rom zero  to a value on the order  of the 
velocity of the receding meniscus  within a layer  of thickness l <<h0. 

Since at a distance l the velocity component tangential to the outline of the bubble does not manage to 
inc rease  significantly f rom the zero value which it had on the gap walls, we can assume that the formation of 
the layer  left on the walls by" the receding meniscus will be affected only by the velocity component normal  to 
the bubble outline. We have in  mind that the bubble velocity is not too grea t ,  so that the thickness of the res id-  
ual f i lm is smal l  in compar ison with the gap width. 
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Fig .  4. D i a g r a m  f o r  ca l cu l a t i on  of a wedge"  
shaped  h e a t - t r a n s m i t t i n g  channel .  

Then ,  taking into account  the  q u a s i s t a t i o n a r y  na tu re  of the bubble  mot ion  and the  inequal i ty  R 0 >> h0, we 
f ind,  us ing  e x p r e s s i o n  (1 .5 .15 ' )  f r o m  [4], the change  in t h i ckness  of the f i lm s e p a r a t i n g  the bubble f r o m  the 
wal l  in a d i r e c t i o n  p e r p e n d i c u l a r  to the bubble  ve loc i t y ,  

8~=8~176 6 o = I ' 3 1 ( P W I  ~ 2 / 3 ' \  p'o" ] % = a r c s i n  (R~_o .sincp), 

w h e r e  R,  q) a r e  the p o l a r  c o o r d i n a t e s  in the  p lane  of s y m m e t r y  of the gap with the o r ig in  at the c e n t e r  of  the 
bubble  (Fig.  3). 

The  m e a n  (over  the a rea )  coe f f i c i en t  of hea t  t r a n s f e r  f r o m  the s u r r o u n d i n g  m e d i u m  to the f r e e  f i lm s u r -  
f ace  can  be c a l c u l a t e d  f r o m  the f o r m u l a  

KM _ 4 ~ cos ~ 
j 1 6~ 

-- -{. 

If  the h e a t - t r a n s f e r  coe f f i c i en t  on the o u t e r  s u r f a c e  of the wal l  i s  not too high (a << ~/6n) ,  then K M ~ ~ .  

The f low of hea t  to the bubble  t h rough  the f i lm is  

Q2 = 2nKM/~ AT. 

When R0/h >> 1, Q2 >> Qi and the c o m p o n e n t  Q1 can  be neg lec ted .  

As a f i r s t  e x a m p l e  we c o n s i d e r  the p r o c e s s  in a p l a n e - p a r a l l e l  gap  (h 0 = cons t ,  u 0 = cons t ) .  

The bubble  g rowth  r a t e  in th is  c a s e  is  g iven  a p p r o x i m a t e l y  by the  e x p r e s s i o n  

(4) 

dV _4auhoRo dR o 
dt dx 

(51 

Subst i tu t ing  (5) in (3) and so lv ing  the ob ta ined  equa t ion ,  we find 

Ro (x, xo) = R1 exp [ • (x 2-- x~ ]j ' • = KMA~Tuh~rp" 

whe re  R~ is  the r ad ius  of the bubble beginning t r a n s l a t i o n a l  mo t ion  in sec t ion  x 0 [R 1 = R0(x0, x0) ]. 

T h u s ,  if we neg lec t  the hea t  f lux Q1, the  coe f f i c i en t  ~ in this  c a s e  will  s a t i s fy  the  fol lowing convolu t ion  
i n t e g r a l  equat ion:  

~1 (x) + M 2~ exp [• (x - -  Xo) l q (x0) dx o = _MM [exp (• - -  1 ] 
d 
0 

H e r e  M = ~NR}/u. 

The  so lu t ion  of Eq.  (6) has  the f o r m  

(61 

M 
n -- {exp I x - - M )  x] - -  !}. if) x - - M  

This formulation of the problem assumes that an increase in the surface area of contact between the ~II 

and bubbles is mainly due to bubble growth, and not to the appearance of new bubbles at early stages of growth, 

i.e., the total area of surface of small bubbles can be neglected. Hence, M <<u. 
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The amount of heat  supplied in the port ion of the channel f rom 0 to x in unit t ime is 

Q.~ -- 2rp "bu~] (x) h. 

The dis t r ibut ion of the t i m e - a v e r a g e d  specif ic  heat  f luxes has the fo rm 

q (x) : 2nrp"hoR~ "N exp [(• - -  M) x]. 

In the ease  of a wedge-shaped  slot  [h = (x + x , )  t an~ ,  Fig.  4] the bubble growth ra t e  is approximate ly  

dV u ( 4~hoR o dRo dh o 
dt ~ -b 2~R~ . = . - d U x ,  (8) 

If the  plane of s y m m e t r y  of the channel is  hor izonta l ,  the veloci ty  of the f la t tened bubble in the d i rec t ion 
of the x axis will be p rac t i ca l ly  constant  when Re <<R0/h0 (u = u M ~ ~) /3~ [3]). When m a s s  fo rces  obviously 
p redomina te ,  the bubble veloci ty  is  p ropor t iona l  to h2(x) [u ~Ug = gph~ (x)/3p, if  Ug >> UM]. I n  view of re la t ions  
(3), (4), and (8) the bubble radius  in the f i r s t  and second case  will va ry  in the following way: 

R2o (X, Xo) _ (  x +_,x. )n, 

R~ x o + x, 

R2~ x~ = X ~  exp [ [ ~ o  A . _  A J ] .  
R~ x + x ,  + x,) ~ (x + x,) ~ 

We can a s s u m e  that  in the case  of a wedge-shaped  channel R1 = lllh0(x0) = II (x 0 + x , ) ,  where II = const ,  
n~ = o ( I ) .  

If, as in the treatment of the process in a channel with parallel walls, we neglect the heat flux QI, then 
for the coefficient ~ we can write a Volterra-type integral equation: 

3r 
(x) - -  co .f K (x, xo) ~ (xo) dxo = I. (9) 

0 

The p a r a m e t e r  w and the ke rne l  K(x, x0) in the f i r s t  and second c a s e s ,  r e spec t ive ly ,  have the fo rm 

o = - -  a~vl= - -  .~II*N/u M, 

K (x, xo) = (x~ + x,)~/(x + x,) ~-~. 

= ~ ~g ~ - -  3nlT~N~/pg tg * #, 

K (x, xo) = [(x o + x,)/(x § x,)l exp [A/(xo + x,)  ~ - -  A/(x  + x,)~l �9 

Equation (9) for  any values of p a r a m e t e r  ~ has a s ingle summab le  value,  which can be exp re s sed  in t e r m s  

of the reso lven t  

"0 

r e p r e s e n t e d  by the convergent  power  s e r i e s  

/" (x, s, ~o) = ~ o m-1 Km (x, s), K1 (x, s) = K (x, s), 
t n ~ l  

x 

K m (X, S ) =  .I K (x, sl)Krrt_ 1 (Sl, s)d$1 . 
o 

F o r  ins tance ,  in the case  of hor izonta l  p lacement  of the channel,  which is of m o s t  p rac t i ca l  in t e res t ,  

r ( __ (0~/[X2 .6g, ( X~--3 - -  X 6 X fl ~ X6 ) __x 
~ q ( x ) = l - - ~ =  fl---3 -X~ XS) 3 ~ - - 3  .o_--6 + . . . .  X = I +  �9 (10) X, 

In evaluat ing the veloci ty  u(x) of the bubbles throughout the above t r ea tmen t  we ignored the i r  dr i f t  due 
to back  flow of the liquid. The veloci ty  of the back  flow, averaged  over  t ime  and over  the channel width, is  

p" ~ (x) 
v (x) - u (x). 

o' 1--  ~ (x) 
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H e n c e ,  n e g l e c t i n g  the  bubb le  d r i f t ,  we i n t r o d u c e  a r e l a t i v e  e r r o r  [4]: 

A u ( x )  = _ 2 ,o'j_. n (x) 

u (x) o' 1 - -  ~ (x) 

which  i s  o b v i o u s l y  n e g l i g i b l e  i f  the  c o e f f i c i e n t  ~?(x) i s  not  too c l o s e  ~o un i ty .  

NOTATION 

Ts, saturation temperature; T w, temperature of inner surface of channel walls except for small regions 
adjacent to bubbles (it is practically the same as the temperature of the evaporation zone outside); AT = T w - 
Ts; p', p~, densities of liquid and vapor, respectively; #, a, X, dynamic viscosity, thermal diffusivity, and 
thermal conductivity of liquid; a, coefficient of heat transfer from external medium to inner surface of channel 
wall; Q, heat flux to bubble; QI, Q2, components of heat flux from main mass of liquid and through thin layer 
separating bubble from wall, respectively; Q3, amount of heat supplied in region from 0 to x; KM, mean heat 
transfer coefficient, averaged over bubble area; no, number of vapor-forming centers per unit area of wall; 

N, mean number of bubbles beginning translational movement from unit area of wall in contact with liquid in 

unit time; to, period of bubble formation; t2, time of bubble departure from vicinity of vapor-forming center; 
x, distance from start of evaporation zone; x0, bubble nucleation coordinate; b, channel width; 2h 0 (x), height 
of slot channel at cross section x; ~, angle of inclination of walls of channel of variable section; ~n, thickness 
of layer of liquid left on walls; R0, RI, instantaneous radius of bubble flattened in the channel and at the start 
of its translational movement; V, bubble volume; r0, tube radius; r, heat of evaporation; ~, surface tension co- 
efficient; u, bubble velocity; v(x), velocity of back flow of liquid in section x, averaged over time and channel 
width; q(x), specific heat flux per unit area of median channel surface, averaged over time and channel width; 
gl =g + 0.925cm/(h02P'); g, density of mass forces in x direction; ~, U, fractions of wall surface adjacent to 
liquid and vapor, respectively (~ + ~ = 1); rl, HI, dimensionless constants; z, distance from plane of symmetry 
of channel; Re = p'uh0/#; Pe = uh0/a ; Fr = u2/(gi2h0); Be = 4h~p'gl/~; Bi = ah0/X; T = gu/~; G = ~2/p'~r0; M = 

~NR~/u; ~t = (KMAT)/(2uh0r  p") ;  ~2 = ( 2 K M A T ) / ( r p " u  M - -  2 tan  ~); A = (KMAT) / (2 r  p "T tan  ~); T = (gp'tan2~)/(3p}; 
y = R - - R 0 ;  Wg = (3~II2Np)/(p 'g tan2v);  WM = ~II2N/UM; X = 1 + ( x / x , ) .  
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